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Local Convergence of Difference 
Newton-Like Methods 

By T. J. Ypma 

Abstract. Using affine invariant terms, we give a local convergence analysis of difference 
Newton-like methods for solving the nonlinear equation F(x) = 0. The convergence condi- 
tions are weaker than those standardly required for methods of this class. The technique and 
results are valid for all currently known difference Newton-like methods which require 
evaluation of all components of F at the same point. Radius of convergence and rate of 
convergence results for particular difference Newton-like methods may easily be derived from 
the results reported here. 

1. Introduction. Newton-like methods for solving the system of nonlinear equa- 
tions 

(l.l) ~~~~~F(x) = ; F: D C R N ---RN 

have the form 

(1.2) x1+1 x - A-'F(x1), i 0,1,..., 

where xo c D is some given starting point and Ai C C(RN) (i = 0, 1,...) is some 
approximation to the Frechet derivative F'(xl) of F at xl C D. In this paper we 
examine methods of the form (1.2) in which the Ai C f(RN) are difference ap- 
proximations to F'(xi) in the following sense: 

Let P, Q C F&(RN) be two matrices with columns pj, qJ C RN (j = 1,...,N), 
respectively. Let x c D, and suppose pj, qj are such that x + p1, x + qj C D 
(j = 1,... ,N). Write R P - Q, and suppose R C f&(RN) is nonsingular. If Y(x) 
c& C(RN) is the matrix whose columns yj(x) satisfy 

(1.3) yj(x) =_F(x + pj) -F(x + qj), j= ,..,N 

then the difference approximation B(x) C f(RN) defined by P, Q C C(RN) to the 
Frechet derivative F'(x) of F at x is 

(1.4) B(x) -Y(x)R-'. 

The use of difference approximations in (1.2) thus gives iterative methods of the 
form 

(1.5) x+ = x- B(xl) 'F(xl), i l = 01....I 

which we refer to as difference Newton-like methods. Whenever we write (1.5) we 
imply that for each i = 0, 1,... there exist Pi, Qi C f(RN) such that B(xi) is the 
difference approximation to F'(xl) defined by PI and Qi. 
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Methods of this form have been extensively studied. In both [5] and [6] many such 
methods are described; both references provide many theoretical results, a historical 
survey and lengthy bibliographies. The general method (1.5) considerably extends 
the methods considered in [5]; in fact it includes all currently known Newton-like 
methods in which the Jacobian matrix F'(x) is approximated by differences between 
values of F, provided that all the components of F are evaluated at the same point. 

It is well known [1], [2], [3], [9] that many methods of the form (1.2) are affine 
invariant in the sense that when they are applied to the transformed mapping 

(1.6) F--CF, 

where C E f(RN) is any nonsingular matrix, then the corresponding approximation 

AI to the derivative F'(xl) of F at xl is such that 

(1.7) Al F(xl Al 'F(x1), ,1, ..., 

with the consequence that 

(1.8) -l+l = xl-Al'F(x1) - Ay'F(xl), i 0,1,..., 

that is, the method (1.2) produces the same sequence of iterates when used to solve 
F(x) = 0 as it does when used to solve F(x) = 0. Methods with this property are 
important because they are likely to be insensitive with respect to scaling of the 
mapping F. In [3] it was pointed out that affine invariant methods should be studied 
in affine invariant terms, that is, terms which are unaffected by the transformation 
(1.6). In view of these remarks the analysis in this paper is conducted largely in 
affine invariant terms. By (1.3)-(1.7) it is clear that difference Newton-like methods 
are affine invariant if and only if both the matrices PI, Q, E& C(RN) which define 
B(x,) are invariant with respect to affine transformations of F, for i , 1 . 

In this paper we provide conditions under which difference Newton-like methods 
converge to a solution x* E RN of (1.1). We show by example that radius of 
convergence and rate of convergence results for particular difference Newton-like 
methods may easily be derived from our fundamental results. 

2. Basic Theory. Throughout this paper llxll for x E RN will denote the Euclidean 
norm of x and uGCII for C E F&(RN) will denote the subordinate spectral norm of C. 
If C E f(RN) has columns Cj E RN (j = 1, 2, .. .N), then the Frobenius norm of C 
is defined as IICIIF (= ( 11c1112)'72, and [2] 

(2.1) IlCJl ICIISICIF, j= 1,...C,N. 

For x E RN and 3 > 0 

(2.2) U(x, 8) {y E RN: lx - < 3} 

denotes the open 8-neighborhood of x in RN. We write ej (j 1,...,N) for the 
columns of the N X N identity matrix. 

We restrict our attention to the following class of mappings. 

(2.3) 0-(F: D C RN RN where F is continuously Frechet differentiable 

on the nonempty, open, convex set D (which may depend on F) }. 
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Given x C V C RN, where V is open, we define 

(2.4) '(x, V) {F C 0: V C D; F'(x)' exists; there exists 
K > 0 such that for all y, z c V, 

(2.5) |IF'(x) '(F'(y) - F'(z)) 11 < Kly -zll 

and for any a > 0 we define 

(2.6) F(a){F& 4C(x*, U(x*, a)) where x* C D is such that F(x*) 0=) 

For any F C '(x, V) we define 

(2.7) p1(F, x) sup{ IIF(x)l (F z(Y)F7 Y ,Z V; 

Notice in particular that if F C I(x, V), then for all a, b C V 

IF'(x))'(F'(a) - F'(b)) | < p(F, x)la - bll. 

Using the perturbation lemma [5], it is easy to show [7]-[9] that if F C I(x, V), 
then, for any y C V with llx - yll < (F, x)-1, F'(y) is nonsingular and for all a, 
bC V 

IIF(y)-l(F(a )-F F'(b)) || < IIl _a - bli, I -p4LF, x)IIx - yII 

from which it follows that 

(2.8) F E 4(y, V); M(F, y) < I ,(F, x) 
1 - [d(F, x)IIx - yI 

We now provide bounds on the error in approximating the Jacobian matrix F'(x) 
by a difference approximation B(x). The results extend those described in [2] and 
[9]. We require the following definition: 

If P, Q c (RN) are such that R P - Q is nonsingular, with columns r 
(j 1. N), then 

(2.9) h(P, Q) (11PllF + llQllF) |diag(llrjll,..., llrNll)R || 
(2.10) THEOREM. If F C 0, x 6 D and there exists L > 0 such that for ally C V 

IF'(x) - F'(y)|| < Lx -yll, 

and if B(x) is the difference approximation to F'(x) defined by P, Q c f(RN), then 

(IB(x) - F'(x)l < I Lh(P, Q). 

Proof. By definition 

B(x) - F'(x) Y(x)R' - F'(x) = (Y(x) - F'(x)R)R-' 

(Y(x) - F'(x)R)C-'CR-', 

where C _ diag(lI r, I,... , rN I) is nonsingular. By a well-known mean value theorem 
[6, 2.2.10] 

I(Y(x) - F'(x)R)ej11 =IIF(x + Pej) - F(x + Qej) - F'(x)(Pej -Qej) 

2?L||Pej 
- 

Qej ( Pej + ?Qej) LIIrji I ?IPi+ qj)- 
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It follows that 

||(Y(x) - F'(x)R)C-l' <|(Y(x) F 

=N (Y(X)-F'(X)R)C_lel 2 = 
( Ii(Y(x) - F'(x)R)e )2 

( 1 )2 N ( 1/ 

( J=]12 

Combining these expressions gives 

( IB(x) -H F L(x)II Le F ll(,. If() i t i) IICRee a 

= Lt E (Illpll + llqll) I ldiag(llr II.w. lIrNII)R-11 

But by the Minkowski inequality 

(2.2 h(IlP,II lIqJII) <2 1(F | IIP QIF 

from which the result follows. an 
An analogous result appears in [6, 5.3.41. In the frequently used case that Q-0 

Theorem (2.10) reduces to the result of [2, Theorem 3.45. We now provide an affine 
invariant form of Theorem (2.10). 

(2.11) THEOREM. Let F E I(x, V). If B(X) is the difference approximation to F'(x) 

defined by P, Q E C (RN ) and if 

(2.12) h(P, Q) < 2p(F, x)'. 

then B(X) is nonsingular and 

(2.13) |IB(X) 'F (X) -11 I 2-[(F, x)h(P, Q) 

(2.14) |IB(x) 'F (x)ll < 2- ,xh ,Q 

Proof. The proof of (2.13) is entirely analogous to that of [2, Theorem 3.51. Then 

(2.14) follows from JIB(x)-'F'(x)ll < JIB(x)-'F'(x)- III + 1. Ol 
The following lemma is a useful aid to satisfying condition (2.12). 

(2.15) LEMMA. Let F E 4f(x, V). If y E V satisfies 

||X -Yll + 2E- < [L(F, x)- 

for some E (0, 2[(F, x)-1), then F E IP(y, V) and for all P, Q E C(R N )with 

h(P, Q) < 

h(P, Q) < 2[L(F, y)-1 
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Proof. As noted in (2.8) F E I(y, V) and 

1(F, y) < Pl(F, x) 
1 -M[(F, x)jjx- yll 

from which it follows that 

h(P, Q) s - s 2(A(F, X)- - llx -yll) < 2A(F, Y)' IEO 
The following mean value results will also prove to be useful. 

(2.16) LEMMA. Let F E I(x, V) and suppose B(x) is the difference approximation 
to F'(x) defined by P, Q E E(RN) with h(P, Q) < 2M(F, x)-'. Then for ally, z & V 

(2.17) |IB(x) '(F'(y) - F'(z))IS2 - 2M(F, x)h( Ily-zll 2 [(F, x)h(P, Q)y 

(2.18) IB(x)-'(F(y) - F(z) - F'(z)(y - z))l 2- (F, x)jjy - Z112 
2- p4(F, x)h(P, Q)~ 

Proof. 

|IB(x) '(F'(y) - F(z)) ? IB(x)'F'(x) || IF'(x)'(F'(y) - F'(z))||, 

which, with (2.14), gives (2.17). Defining F(y) B(x)-'F(y) for all y 6 V, we 
obtain from (2.17) 

2Mu(F, x) 
||F'(Y) -F'(z)||s 2 - (F, x)h(P, Q) IY-Zl 

for all y, z C V. Together with a well-known mean value theorem [5, 3.2.12] this 
gives (2.18). El 

3. Local Convergence. The result underlying our local convergence analysis is the 
following lemma. 

(3.1) LEMMA. Let F & 'F(a) for some a > 0. For any x E U(x*, a) let B(x) be a 
difference approximation to F'(x) defined by some P, Q e f(RN) with h(P, Q) s < 
for some c > 0. If lix - x*11 + ? < M(F, x*)-1, then B(x) is nonsingular and 

(3.2) x - B(x)'F(X) - x tL(F, x)llx 
- xli (lx - x*1 + h(P, Q)) 2 - M(F, x)h(P, Q) 

Proof. Clearly e < 2M(F, x*)-l. Since F E 4P(x*, U(x*, a)), by Lemma (2.15) 
F E 'I(x, U(x*, a)) and h(P, Q) < 2M(F, x)-'. By Theorem (2.11) it follows that 
B(x) is nonsingular, and using also Lemma (2.16) 

x - B(x) 'F(x) -x*1 
= |IB(x)'(F(x*) -F(x) - B(x)(x* - 

x))|| 

<IIB(x) '(F(x*) - F(x) - F'(x)(x* -x)) 

+ |IB(x) '(F'(x) -B(x))(x* - x)|| 

sM(F, x)iix - X*112 + M(F, x)h(P, Q)iix - x*ii 
2 - p(F, x)h(P, Q) 

which gives the result. El 
This leads directly to the convergence theorem. 
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(3.3) THEOREM. Let F E 6T(a) for some a > 0. For all xi E U(x*, a) let B(xi) be a 
difference approximation to F'(x1) defined by Pi, Qi E e(RN) such that 

(3.4) h(Pi, Qi) < 

for some c > 0. Then the iterative method 

(3.5) X+I = X - B(xi)'F(x1), i =, 1,..., 

converges to x* if the starting point xo E U(x*, a) satisfies 

(3.6) Ixo - x*I1 + 2,- < 2tu(F, x*)-'. 

The sequence {xi } then satisfies 

3L(F, x*)Ilxi - x*II(IIxi - x*II + h(Pi, Qj)) 

(3.7 K? i+- 2(1 - p(F, x*)Ilxi - x*II) - [i(F, x*)h(Pi, Qj) 

Proof. Notice 2(pt(F, x*)-l-E) < t(F, x*)-l -2. Assume llxi - x*II < llxo - x*; 
then x1 e U(x*, a) and llx1 - x*II + 2c < 24i(F, x*)-1, so llxi - x*II + 4e < 

,i(F, x*)-1. By Lemma (3.1) it follows that B(xi) is nonsingular, so the iteration (3.5) 
is feasible and (3.7) follows from (3.2) using 

(3.8) t(F, xi) < - p 4(F, x*) 
1 -/I(F, x*)IIxi - x*II' 

It follows by induction that {llxi - x*II} decreases monotonically to zero if (3.6) 
holds, since in that case 

p(F, x*)(lIxo - x*II + e) <1 0 

2(1 - u(F, x*)IlIxo - x*I) - pt(F, x*)E 

The above result is sharp. 

(3.9) THEOREM. For any a > 0 and 8 > 0 there exist F E ?f(a) and e > 0, with 

3 + 3j > 4u(F, x*)-1, and P: U(x*, a) -- E(RN) and Q: U(x*, a) -- E(RN) with 
P(x) - Q(x) nonsingular and h(P(x), Q(x)) <cE for all x E U(x*, a), and there 
exists xo E U(x*, a) with 

IxO - x*II + c ? j,u (F, x*) + 3, 

such that if iteration (3.5) is used with B(xi) defined using P(xi), Q(xi) E E(RN), then 
the method does not converge to x*. 

Proof. For N = 1 define F to be the pseudo-cubic 

2 if xO, 
~~Jb i-Lx 2 if X> 0 

where O<L<a' <3L. With x*= 0 it is easy to show that F EN 5(2L-'), so 
FE &J(a), and ,u(F, x*) = L. Clearly a > 2L-1. Let e > 0 and 3 > 0 be such that 
r + 2c > 2L-' and E - 38 < f < , and for all x - U(x*, a), x # 0, let Q(x)- 0 

and P(x) =_ 8x/1 x I. Clearly h(P(x), Q(x)) = /3 < e for all x #- 0 and 

f (2 +2Lx-L/L3) if x<O0, 
B(x)- {(2-2Lx-L/3) ifx >0 
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It is easy to verify that x - B(x)-'F(x) = -x if and only if x = + 2(L- ). 
Taking xo = 2(L- ) it follows that iteration (3.5) fails to converge to x* 
although 

|x - X* I + 2,E 
- 2(L-' -, + E) < 23L-' + S. O- 

It is sometimes easier to estimate ,u(F, xo) than t,(F, x*) [7]-[9]. Hence the 
following corollary is useful. 

(3.10) COROLLARY. Let F E S:(a) for some a > 0. For all x, E U(x*, a) let B(xi) 
be a difference approximation to F'(x,) defined by Pi, Qi E f&(RN) such that 

(3.11) h(Pi, Qj) <? 

for some E > 0. If xo E U(x*, a) satisfies 

(3.12) IIxo - x*II + 4c < 2tt(F, x0)'1 
and if F E I(xo, U(x*, a)), then the iteration (3.5) is feasible and converges to x* with 
convergence characterized by (3.7). 

Proof. As in (2.8) 

Fx*) < 1 (F, xo) 
1 -p4tF, x0)JJx0 - x1 

with 3,u(F, xO)IlxO - x*11 <2 - 4,(F, xo)E this gives 

Ix1 - x*11 < 2(1 - p(F, xo)llxO 
- 

x*11 
- 

2/l(F, x0)c) < 2(,(F, x*)' - 2e). 0 tt(~~~~pF, xo) 

Also lxo - x*II < 2(,u(F, x0)- - 2E) implies 

tL(F, xo)(IlxO - x*11 + c) < 1 

2- (F, xo)E 3 

Now xl generated by (3.5) is well defined since h(PO, Q0) < E < 2,u(F, x0)-1, so that 
by Theorem (2.11) B(xo) is nonsingular. It follows as in Lemma (3.1) that 

IIxi - x*II tt(F, xo)(Ho)lxO-x*1 + - I 

< IIxo - x*I < 2(p(F, x*)' - 2e) < 2 (p(F, x*) -E). 

The result follows from Theorem (3.3). D 
The results of Theorem (3.3), Theorem (3.9) and Corollary (3.10) are analogous to 

those proved for Newton's method in [7] and for difference Newton-like methods 
with Q _ 0 in [9]. 

The appearance of the term E in the radius of convergence results (3.6) and (3.12), 
together with the restriction h(P, Q) < E, may be regarded as limiting the choice of 
P and Q. Conversely, if h(P, Q) can be related to llxo - x*II directly, then it is 
possible to calculate a limit on llxo - x*11 from (3.6). For example if P and Q are 
always selected in such a way that for some M > 0 

(3.13) h(P, Q) < Mllxo - x*I, 
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then condition (3.6) is satisfied if 

(3 .14) lIxo - x*l < (3 + 2M)p(4F, x*) 

Thus for many difference Newton-like methods currently in use explicit radius of 
convergence results are obtainable from (3.6) and (3.12). 

Notice that we have proved convergence of difference Newton-like methods 
requiring from P, and Q, only that P, - Q, be nonsingular and h(Pi, Q,) uniformly 
bounded, for all Pi and Q, used. This is weaker than the standard requirement [5], [6] 
that for all Pi and Q, used, l PillF and 11Q, F are sufficiently small and there exists 
Q > 0 such that if R, - Q, has columns rij (j = 1,. . . ,N), then 

(3.15) j1diag(l1r,111, ... ,11rNJIl)R,'1 --< Q, i = 0,1,. . 

Our analysis permits (3.15) to be violated so long as h(Pi, Q,) remains bounded; this 
is useful in view of certain difference Newton-like methods in which 11P,11 F and F1Q,11F 

are related to llx, - x*11 and may therefore decrease rapidly enough to keep h(P,, Q,) 
bounded, despite violating (3.15). Moreover, our result is in line with one given in [4] 
in the following sense. It is well known [5], [6] that (3.15) is equivalent to the 

existence of w > 0 such that 

(3.16) det(R1diag(1r,11111 ,... ,IIrNlI1)) w, i 0,1,..., 

where w and Q are inversely proportional. In [4] it was proved that for certain 
multivariate secant methods convergence is obtainable even if (3.16) is violated. Our 

results show that for any difference Newton-like method condition (3.16) is not a 

necessary condition for local convergence. 
A bound on the rate of convergence of the method (3.5) may be deduced from the 

inequality (3.7). It is immediately evident that if {h(P,, Q,)} is bounded below by 

some positive number, then convergence may be no more than linear, while if 

{h(P,, Qj)} converges to zero, then convergence is superlinear. The actual rate of 

convergence depends on the definitions of P, and Q, which determine how rapidly 

{h(P,, Q,)} converges to zero. We note in addition that superlinear convergence is 

possible even though (3.15) is violated, an observation in line with the results of [4]. 

4. Applications. In order to illustrate the use and value of the theoretical results we 

briefly discuss the application of the theory to some particular difference Newton-like 
methods. 

(i) Given d' E RN, d' =(d,. . . ,d ) with dJ ' 0 (j 1,...,N), define Qi 0 
and Pi = (dlie1,. . . ,dNeN). This is the standard one-point approximation [5], [6]. 
Clearly h(P,, Qi)=IPiF =ld'ill 

(ii) Given d' E RN, d' (d',...,d ) with d>7 0(1=1,.. .,N). define: 

Pi = (d;el, d{e, 
+ 

d'e2,...,d{e, 
+ +d eN), 

Q (0, de ,I ... 
.,d{e + 

*+d-le 
) 

This is another frequently used one-point approximation [4], [5], [6]. Clearly 

h(Pi, Qi)= IlpillF + IIQiIIF < 2VIN11d'lI. 
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(iii) Given d' E RN, d'-(d,. . .,dy) with d' 0 0, define Q, 0 O and P, = IId'IITi, 
where Tl E E( RN) is an orthogonal matrix calculated as follows [6]: 

Define b E RN, b (b,... ,bN)T by b1 a(lid'l + Id' ), bj ddJ (j 2,...,N), 
where 

{+1 if d >0, 
a-- 

I-i if d' < 0; 

set 2,IBI-d'ii( Id'II + I di 1) and c-b/ 2/3; then T1 -a(I-ccT). Then T, T= 
= Tand P,e= d'/iid,ii, hence h(P,, Q,) = Ild'IlilTiliFlTi=ll V'IId'Ii. 
For each of the methods (i)-(iii) both the radius of convergence and the rate of 

convergence thus depend on lId' ii. Typically d ' is selected such that, for some k > 0, 

iid'il kllxlx, - x,li, with x1 l RN some additional point, or for some 1> 0, 
iid'il 1 jIIF(x,)ii (i = 0, 1,...). In the first case we obtain 

ild'il < k(llx, - x*ii + llx,l- - x*ii); 

it follows from Theorem (3.3) that the methods are locally convergent and that for 
some y > 0 

IIx,+I - x*I I< ylix, - x* l lxi -I - x*II, i = 0, 1,..., 

from which follows the classic result [5], [6] that the R-order of convergence is 
+(1 + F/5). In the second case we obtain 

ild'il < 1ijF'(x*)iiiix, - x*ii [I + 4t(F, x*)ilxl - x*ii], 

hence these methods too are locally convergent, and for some p > 0 

IIxi?1 - X*II < plix, - X* II2 i = 0, 1. 

Thus quadratic convergence occurs. 
Multistep difference methods are slightly more complicated to analyze. We give a 

fairly general example. 
(iv) Given some sequence {d'} C RN of vectors such that di, d d,...,dlN?l are 

linearly independent (i = 0, 1,...), and given some starting points x0, x l,. ..,x I 
E RN, define P, and Q, by: 

P1e1 XiN?J+ diN? X 
Q, ej X i-N +j + dXi-, i 

Then R, , = - Q+I,...,d1). Repeated applications of the Minkowski 
inequality produce 

ul I - IIQIII, s 2 NQ, - X*|| + IlRilF + lI Xi Nl x*j 2 1 

Our Theorem (3.3) therefore guarantees local convergence of such a method if the 
sequence {Ild'II} C R is uniformly bounded and condition (3.15) holds. For particu- 
lar choices of {d'} it may even be possible to prove local convergence without 
satisfying (3.15). 
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The choice d J' xj -j in (iv) leads to the notorious N-point secant method. It 
is easy to prove that in this case 

IIRlIIF X ( Xi-N+j-1 - X*) 1/ + 2 ||Xj-N+j X 1 /2 

but, since Ri may become singular, this method is dangerous. More generally a 
choice of d' with the property IId'II < kIxi-I - xiI for some k > 0 leads to a similar 
bound on IIRAIIF, so that if we assume (3.15) holds, then we obtain local convergence 
in the same way as before. In the latter case it follows from (3.7) and the expression 
for h(Pi, Qi) obtained from the bound on IIRillF that there exists T > 0 such that 

11Xi+ 1 X || < TIIXi - X* |IXi-N 
- X ||, i = 0, 1, ..., 

from which it follows that the R-order of convergence is the unique positive root of 
zN+ - ZN -1 0= [6]. This analysis covers the generalized N-point secant method, 
the cyclic N-point secant method and the stabilized N-point secant method discussed 
in [6]. For the latter two methods the condition (3.15) is automatically satisfied by 
the choice of the vectors d'. 
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